loyep.com avatar loyep
  • techJuly 2, 2023

    Vue3 Diff算法深度解析:从双端到快速路径的性能优化

    深入剖析Vue3中diff算法的实现原理,解读从Vue2到Vue3的算法演进,以及快速路径、最长递增子序列等核心优化技术。

    Vue3diff算法虚拟DOM性能优化源码分析

    Vue3 Diff算法深度解析:从双端到快速路径的性能优化

    在现代前端框架中,虚拟DOM的diff算法是影响渲染性能的关键因素。Vue3在这方面做了重大改进,不仅优化了算法效率,还引入了多种优化策略。

    这篇文章将深入解析Vue3 diff算法的实现原理,分享我在源码研读和性能调优过程中的理解。

    diff算法的核心问题

    什么是diff算法

    diff算法的核心任务是:在新旧两个虚拟DOM树之间找到最小的更新操作集合

    理想情况下,我们希望:

    1. 准确性:正确识别所有需要更新的节点
    2. 效率:尽可能少的DOM操作
    3. 性能:算法本身的时间复杂度要可控

    算法复杂度挑战

    两个树之间的完整diff算法时间复杂度是O(n³),这在实际应用中是不可接受的。因此,主流框架都采用了基于启发式的优化算法,将复杂度降到O(n)。

    Vue2 vs Vue3:算法演进

    Vue2的双端比较算法

    Vue2采用的是经典的双端比较算法:

    // Vue2 双端比较核心逻辑
    function updateChildren(parentElm, oldCh, newCh) {
      let oldStartIdx = 0
      let newStartIdx = 0
      let oldEndIdx = oldCh.length - 1
      let newEndIdx = newCh.length - 1
      let oldStartVnode = oldCh[0]
      let oldEndVnode = oldCh[oldEndIdx]
      let newStartVnode = newCh[0]
      let newEndVnode = newCh[newEndIdx]
    
      while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
        if (isUndef(oldStartVnode)) {
          oldStartVnode = oldCh[++oldStartIdx]
        } else if (isUndef(oldEndVnode)) {
          oldEndVnode = oldCh[--oldEndIdx]
        } else if (sameVnode(oldStartVnode, newStartVnode)) {
          // 头头比较
          patchVnode(oldStartVnode, newStartVnode)
          oldStartVnode = oldCh[++oldStartIdx]
          newStartVnode = newCh[++newStartIdx]
        } else if (sameVnode(oldEndVnode, newEndVnode)) {
          // 尾尾比较
          patchVnode(oldEndVnode, newEndVnode)
          oldEndVnode = oldCh[--oldEndIdx]
          newEndVnode = newCh[--newEndIdx]
        } else if (sameVnode(oldStartVnode, newEndVnode)) {
          // 头尾比较
          patchVnode(oldStartVnode, newEndVnode)
          // 移动节点
          nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm))
          oldStartVnode = oldCh[++oldStartIdx]
          newEndVnode = newCh[--newEndIdx]
        } else if (sameVnode(oldEndVnode, newStartVnode)) {
          // 尾头比较
          patchVnode(oldEndVnode, newStartVnode)
          nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm)
          oldEndVnode = oldCh[--oldEndIdx]
          newStartVnode = newCh[++newStartIdx]
        } else {
          // 建立key索引,查找可复用节点
          if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx)
          idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx)
    
          if (isUndef(idxInOld)) {
            // 新节点,创建
            createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx)
          } else {
            // 找到可复用节点,移动
            vnodeToMove = oldCh[idxInOld]
            if (sameVnode(vnodeToMove, newStartVnode)) {
              patchVnode(vnodeToMove, newStartVnode)
              oldCh[idxInOld] = undefined
              nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm)
            } else {
              createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx)
            }
          }
          newStartVnode = newCh[++newStartIdx]
        }
      }
    }

    这种算法的特点:

    • 四种快速比较:头头、尾尾、头尾、尾头
    • key索引查找:当快速比较失败时,通过key查找可复用节点
    • 时间复杂度:O(n),但常数较大

    Vue3的优化策略

    Vue3在保留双端比较基本思路的同时,引入了多种优化:

    1. 快速路径(Fast Path)优化

    // Vue3 patchKeyedChildren 核心逻辑
    const patchKeyedChildren = (oldChildren, newChildren, container) => {
      let i = 0
      const l2 = newChildren.length
      let e1 = oldChildren.length - 1
      let e2 = l2 - 1
    
      // 1. 从头开始同步
      while (i <= e1 && i <= e2) {
        const n1 = oldChildren[i]
        const n2 = newChildren[i]
        if (isSameVNodeType(n1, n2)) {
          patch(n1, n2, container)
        } else {
          break
        }
        i++
      }
    
      // 2. 从尾开始同步
      while (i <= e1 && i <= e2) {
        const n1 = oldChildren[e1]
        const n2 = newChildren[e2]
        if (isSameVNodeType(n1, n2)) {
          patch(n1, n2, container)
        } else {
          break
        }
        e1--
        e2--
      }
    
      // 3. 处理剩余情况
      if (i > e1) {
        if (i <= e2) {
          // 新增节点
          const nextPos = e2 + 1
          const anchor = nextPos < l2 ? newChildren[nextPos].el : null
          while (i <= e2) {
            patch(null, newChildren[i], container, anchor)
            i++
          }
        }
      } else if (i > e2) {
        // 删除节点
        while (i <= e1) {
          unmount(oldChildren[i])
          i++
        }
      } else {
        // 复杂情况,需要进一步处理
        patchKeyedChildrenComplex(oldChildren, newChildren, container, i, e1, e2)
      }
    }

    快速路径的优势

    • 常见场景优化:头部追加、尾部追加、头部删除、尾部删除
    • O(1)空间复杂度:不需要建立额外的映射表
    • 减少比较次数:大部分情况下避免复杂的diff逻辑

    2. 最长递增子序列(LIS)优化

    当进入复杂diff逻辑时,Vue3使用最长递增子序列来最小化DOM移动:

    function patchKeyedChildrenComplex(oldChildren, newChildren, container, s1, e1, e2) {
      const l2 = newChildren.length
    
      // 建立新子节点的key -> index映射
      const keyToNewIndexMap = new Map()
      for (i = s2; i <= e2; i++) {
        const nextChild = newChildren[i]
        if (nextChild.key != null) {
          keyToNewIndexMap.set(nextChild.key, i)
        }
      }
    
      // 建立新旧节点的索引关系
      const newIndexToOldIndexMap = new Array(toBePatched)
      for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
    
      let moved = false
      let maxNewIndexSoFar = 0
    
      // 遍历旧节点,建立索引关系
      for (i = s1; i <= e1; i++) {
        const prevChild = oldChildren[i]
        if (patched >= toBePatched) {
          unmount(prevChild)
          continue
        }
    
        let newIndex
        if (prevChild.key != null) {
          newIndex = keyToNewIndexMap.get(prevChild.key)
        } else {
          // 没有key的情况下,线性查找
          for (j = s2; j <= e2; j++) {
            if (newIndexToOldIndexMap[j - s2] === 0 && isSameVNodeType(prevChild, newChildren[j])) {
              newIndex = j
              break
            }
          }
        }
    
        if (newIndex === undefined) {
          unmount(prevChild)
        } else {
          newIndexToOldIndexMap[newIndex - s2] = i + 1
          if (newIndex >= maxNewIndexSoFar) {
            maxNewIndexSoFar = newIndex
          } else {
            moved = true
          }
          patch(prevChild, newChildren[newIndex], container)
          patched++
        }
      }
    
      // 计算最长递增子序列
      const increasingNewIndexSequence = moved
        ? getSequence(newIndexToOldIndexMap)
        : EMPTY_ARR
    
      // 从后往前遍历,移动和挂载节点
      j = increasingNewIndexSequence.length - 1
      for (i = toBePatched - 1; i >= 0; i--) {
        const nextIndex = s2 + i
        const nextChild = newChildren[nextIndex]
        const anchor = nextIndex + 1 < l2 ? newChildren[nextIndex + 1].el : null
    
        if (newIndexToOldIndexMap[i] === 0) {
          // 新节点,挂载
          patch(null, nextChild, container, anchor)
        } else if (moved) {
          if (j < 0 || i !== increasingNewIndexSequence[j]) {
            // 需要移动
            move(nextChild, container, anchor)
          } else {
            j--
          }
        }
      }
    }

    最长递增子序列的作用

    // 获取最长递增子序列
    function getSequence(arr) {
      const p = arr.slice()
      const result = [0]
      let i, j, u, v, c
      const len = arr.length
    
      for (i = 0; i < len; i++) {
        const arrI = arr[i]
        if (arrI !== 0) {
          j = result[result.length - 1]
          if (arr[j] < arrI) {
            p[i] = j
            result.push(i)
            continue
          }
          u = 0
          v = result.length - 1
          while (u < v) {
            c = (u + v) >> 1
            if (arr[result[c]] < arrI) {
              u = c + 1
            } else {
              v = c
            }
          }
          if (arrI < arr[result[u]]) {
            if (u > 0) {
              p[i] = result[u - 1]
            }
            result[u] = i
          }
        }
      }
    
      u = result.length
      v = result[u - 1]
      while (u-- > 0) {
        result[u] = v
        v = p[v]
      }
      return result
    }

    实践中的性能优化

    1. key的重要性

    错误示例:使用index作为key

    <template>
      <div>
        <!-- 不推荐:使用index作为key -->
        <div v-for="(item, index) in list" :key="index">
          {{ item.name }}
        </div>
      </div>
    </template>

    正确示例:使用唯一标识作为key

    <template>
      <div>
        <!-- 推荐:使用唯一ID作为key -->
        <div v-for="item in list" :key="item.id">
          {{ item.name }}
        </div>
      </div>
    </template>

    2. v-for优化策略

    场景一:列表项复杂度高时的优化

    <template>
      <div>
        <!-- 使用v-memo优化复杂列表项 -->
        <div
          v-for="item in expensiveList"
          :key="item.id"
          v-memo="[item.updateTime]"
        >
          <ExpensiveComponent :data="item" />
        </div>
      </div>
    </template>

    场景二:条件渲染优化

    <template>
      <div>
        <!-- 避免在v-for内部使用v-if -->
        <!-- 不推荐 -->
        <div v-for="item in list" :key="item.id" v-if="item.visible">
          {{ item.name }}
        </div>
    
        <!-- 推荐:使用计算属性过滤 -->
        <div v-for="item in visibleList" :key="item.id">
          {{ item.name }}
        </div>
      </div>
    </template>
    
    <script setup>
    const visibleList = computed(() => {
      return list.value.filter(item => item.visible)
    })
    </script>

    3. 大列表虚拟滚动

    <template>
      <div
        ref="containerRef"
        class="virtual-list-container"
        @scroll="handleScroll"
      >
        <div
          class="virtual-list-phantom"
          :style="{ height: phantomHeight + 'px' }"
        ></div>
        <div
          class="virtual-list"
          :style="{ transform: `translateY(${startOffset}px)` }"
        >
          <div
            v-for="item in visibleData"
            :key="item.id"
            class="virtual-list-item"
            :style="{ height: itemHeight + 'px' }"
          >
            <slot :item="item"></slot>
          </div>
        </div>
      </div>
    </template>
    
    <script setup>
    import { ref, computed, onMounted } from 'vue'
    
    const props = defineProps({
      data: Array,
      itemHeight: {
        type: Number,
        default: 50
      },
      containerHeight: {
        type: Number,
        default: 400
      }
    })
    
    const containerRef = ref(null)
    const scrollTop = ref(0)
    
    // 可见区域的索引范围
    const visibleRange = computed(() => {
      const start = Math.floor(scrollTop.value / props.itemHeight)
      const end = Math.min(
        start + Math.ceil(props.containerHeight / props.itemHeight) + 1,
        props.data.length
      )
      return { start, end }
    })
    
    // 可见的数据
    const visibleData = computed(() => {
      const { start, end } = visibleRange.value
      return props.data.slice(start, end).map((item, index) => ({
        ...item,
        _index: start + index
      }))
    })
    
    // 上方偏移量
    const startOffset = computed(() => {
      return visibleRange.value.start * props.itemHeight
    })
    
    // 列表总高度
    const phantomHeight = computed(() => {
      return props.data.length * props.itemHeight
    })
    
    const handleScroll = (e) => {
      scrollTop.value = e.target.scrollTop
    }
    </script>

    性能测试和对比

    测试场景设计

    我设计了几个典型场景来测试diff算法性能:

    // 性能测试工具
    class DiffPerformanceTest {
      constructor() {
        this.results = []
      }
    
      // 测试场景1:头部插入
      testPrependItems() {
        const oldList = Array.from({ length: 1000 }, (_, i) => ({ id: i, value: i }))
        const newList = [
          { id: 'new-1', value: 'new-1' },
          { id: 'new-2', value: 'new-2' },
          ...oldList
        ]
    
        return this.measureDiffTime('prepend', oldList, newList)
      }
    
      // 测试场景2:尾部插入
      testAppendItems() {
        const oldList = Array.from({ length: 1000 }, (_, i) => ({ id: i, value: i }))
        const newList = [
          ...oldList,
          { id: 'new-1', value: 'new-1' },
          { id: 'new-2', value: 'new-2' }
        ]
    
        return this.measureDiffTime('append', oldList, newList)
      }
    
      // 测试场景3:中间插入
      testMiddleInsert() {
        const oldList = Array.from({ length: 1000 }, (_, i) => ({ id: i, value: i }))
        const newList = [
          ...oldList.slice(0, 500),
          { id: 'new-1', value: 'new-1' },
          { id: 'new-2', value: 'new-2' },
          ...oldList.slice(500)
        ]
    
        return this.measureDiffTime('middle-insert', oldList, newList)
      }
    
      // 测试场景4:随机排序
      testRandomShuffle() {
        const oldList = Array.from({ length: 1000 }, (_, i) => ({ id: i, value: i }))
        const newList = [...oldList].sort(() => Math.random() - 0.5)
    
        return this.measureDiffTime('shuffle', oldList, newList)
      }
    
      measureDiffTime(scenario, oldList, newList) {
        const start = performance.now()
    
        // 这里调用实际的diff算法
        // performDiff(oldList, newList)
    
        const end = performance.now()
        const time = end - start
    
        this.results.push({
          scenario,
          time,
          oldLength: oldList.length,
          newLength: newList.length
        })
    
        return time
      }
    
      runAllTests() {
        console.log('开始性能测试...')
    
        const results = {
          prepend: this.testPrependItems(),
          append: this.testAppendItems(),
          middleInsert: this.testMiddleInsert(),
          shuffle: this.testRandomShuffle()
        }
    
        console.table(this.results)
        return results
      }
    }

    性能优化建议

    基于测试结果,我总结出以下优化建议:

    1. 合理使用key

    // ✅ 好的实践
    const TodoList = () => {
      return (
        <div>
          {todos.map(todo => (
            <TodoItem
              key={todo.id}  // 使用稳定且唯一的ID
              todo={todo}
            />
          ))}
        </div>
      )
    }
    
    // ❌ 避免的实践
    const BadTodoList = () => {
      return (
        <div>
          {todos.map((todo, index) => (
            <TodoItem
              key={index}  // 使用索引作为key
              todo={todo}
            />
          ))}
        </div>
      )
    }

    2. 减少不必要的嵌套

    // ✅ 扁平化结构
    const FlatList = () => {
      return items.map(item => (
        <div key={item.id} className="item">
          {item.content}
        </div>
      ))
    }
    
    // ❌ 过度嵌套
    const NestedList = () => {
      return (
        <div>
          {items.map(item => (
            <div key={item.id}>
              <div>
                <span>{item.content}</span>
              </div>
            </div>
          ))}
        </div>
      )
    }

    3. 使用memo优化

    <script setup>
    // 使用v-memo缓存复杂计算结果
    const expensiveValue = computed(() => {
      return heavyCalculation(props.data)
    })
    </script>
    
    <template>
      <!-- v-memo会在依赖未变化时跳过更新 -->
      <div v-memo="[props.data.id, props.data.updatedAt]">
        <ExpensiveComponent :value="expensiveValue" />
      </div>
    </template>

    调试和性能分析

    Vue DevTools的使用

    // 在开发环境中启用性能追踪
    if (process.env.NODE_ENV === 'development') {
      const app = createApp(App)
      app.config.performance = true
      app.mount('#app')
    }
    
    // 自定义性能监控
    const performanceObserver = new PerformanceObserver((list) => {
      list.getEntries().forEach((entry) => {
        if (entry.name.includes('vue-render')) {
          console.log('Vue render time:', entry.duration)
        }
      })
    })
    
    performanceObserver.observe({ entryTypes: ['measure'] })

    自定义diff监控

    // 监控diff性能的工具函数
    export function createDiffMonitor() {
      const diffStats = {
        totalDiffs: 0,
        totalTime: 0,
        scenarios: new Map()
      }
    
      return {
        startDiff(scenario) {
          return {
            scenario,
            startTime: performance.now(),
            end() {
              const duration = performance.now() - this.startTime
              diffStats.totalDiffs++
              diffStats.totalTime += duration
    
              if (!diffStats.scenarios.has(scenario)) {
                diffStats.scenarios.set(scenario, { count: 0, totalTime: 0 })
              }
    
              const scenarioStats = diffStats.scenarios.get(scenario)
              scenarioStats.count++
              scenarioStats.totalTime += duration
    
              console.log(`Diff [${scenario}]: ${duration.toFixed(2)}ms`)
            }
          }
        },
    
        getStats() {
          return {
            ...diffStats,
            averageTime: diffStats.totalTime / diffStats.totalDiffs,
            scenarios: Array.from(diffStats.scenarios.entries()).map(([scenario, stats]) => ({
              scenario,
              count: stats.count,
              totalTime: stats.totalTime,
              averageTime: stats.totalTime / stats.count
            }))
          }
        }
      }
    }

    未来展望

    Vue3的diff算法已经相当优化,但仍有改进空间:

    1. 编译时优化:通过静态分析进一步减少运行时diff
    2. 并发模式:类似React Fiber的时间切片机制
    3. 更智能的启发式:基于使用模式的自适应算法
    4. WebAssembly加速:对于超大列表的极致性能优化

    总结

    Vue3的diff算法通过以下几个关键优化显著提升了性能:

    1. 快速路径优化:处理常见的列表变更场景
    2. 最长递增子序列:最小化DOM移动操作
    3. 编译时标记:减少运行时的比较工作
    4. key优化:更高效的节点复用机制

    理解这些原理不仅能帮助我们写出更高性能的Vue代码,也为我们优化现有应用提供了理论基础。在实际开发中,合理使用key、避免不必要的嵌套、使用v-memo等技术都能有效提升应用性能。

    记住,性能优化是一个持续的过程,需要结合具体的业务场景和用户数据来制定优化策略。

    Last updated on